Showing 341 - 360 results of 945 for search 'significantly ((((((largest decrease) OR (larger decrease))) OR (teer decrease))) OR (nn decrease))', query time: 0.68s Refine Results
  1. 341

    Chemical composition of red clay. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  2. 342

    Flowchart of the testing process. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  3. 343

    Mix CBR value/%. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  4. 344

    Mixed embankment settlement monitoring results. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  5. 345

    Test road monitoring results. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  6. 346

    Schematic diagram of the wet/dry cycle process. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  7. 347

    Quantitative analysis table of mix composition. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  8. 348

    Basic physical indexes of red clay. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  9. 349

    Sample preparation process diagram. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  10. 350

    Layout plan of settlement monitoring points. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  11. 351

    SCA-2 curing agent basic parameters. by Yunke Liu (4839084)

    Published 2024
    “…The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter. …”
  12. 352
  13. 353

    Loading mode. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  14. 354

    Model and meshes. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  15. 355

    Shearing forces in the tension zone. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  16. 356

    Pile foundation section. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  17. 357

    Shearing force in the pressure zone. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  18. 358

    Strain-stress maps of vertical pile foundation. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  19. 359

    Displacement-inclination variation graph. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”
  20. 360

    Soil modeling and mechanical parameters. by Maogang Tian (21485116)

    Published 2025
    “…Furthermore, parametric studies reveal that the pile base displacement exhibits a non-linear trend of initially decreasing and then increasing with larger inclination angles of the inclined piles. …”