Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
4001
-
4002
-
4003
Impact of sludge dosage on HPST.
Published 2025“…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
-
4004
Impact of settling time on HPST.
Published 2025“…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
-
4005
ANOVAs for the response surface of Eq (2).
Published 2025“…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
-
4006
Impact of CPAM dosage on HPST.
Published 2025“…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
-
4007
Impact of sewage pH on HPST.
Published 2025“…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
-
4008
Impact of PAC dosage on HPST.
Published 2025“…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
-
4009
-
4010
-
4011
-
4012
-
4013
-
4014
-
4015
-
4016
-
4017
-
4018
-
4019
-
4020