Search alternatives:
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
less decrease » mean decrease (Expand Search), teer decrease (Expand Search), levels decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
less decrease » mean decrease (Expand Search), teer decrease (Expand Search), levels decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6101
-
6102
-
6103
-
6104
Predicting Dinitrogen Activation and Coupling with Carbon Dioxide and Other Small Molecules by Methyleneborane: A Combined DFT and Machine Learning Study
Published 2025“…The capture of carbon dioxide is extremely important due to the increasingly severe greenhouse effect, and the conversion of dinitrogen into high-value N–C compounds is of great significance. Here, we predict through density functional theory calculations that the coupling of dinitrogen with carbon dioxide by methyleneborane becomes favorable both thermodynamically and kinetically. …”
-
6105
Comparison with Existing Studies.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
6106
Specimen Preparation and Experimental Setup.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
6107
UCS texts data.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
6108
-
6109
-
6110
-
6111
-
6112
Supporting information_raw dataset.
Published 2025“…While HR enhanced most soil P fractions, higher N rates (>N100) tended to decrease labile-Pi (inorganic) fractions by up to 45% suggesting a potential decline in plant-available P. …”
-
6113
Soil phosphorus fractionations procedure [41].
Published 2025“…While HR enhanced most soil P fractions, higher N rates (>N100) tended to decrease labile-Pi (inorganic) fractions by up to 45% suggesting a potential decline in plant-available P. …”
-
6114
Top view of the experimental setup.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
-
6115
Parameters of energy harvesting.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
-
6116
Graph for Max Amplitude/Length at G<sub>y</sub> = 0.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
-
6117
Graph for maximum Frequency at G<sub>y</sub> = 0.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
-
6118
Graph for maximum Power at G<sub>y</sub> = 0.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
-
6119
Summary of experimentation results.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
-
6120
Piezoelectric eel.
Published 2025“…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”