Search alternatives:
larger decrease » marked decrease (Expand Search)
less decrease » mean decrease (Expand Search), we decrease (Expand Search), levels decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
less decrease » mean decrease (Expand Search), we decrease (Expand Search), levels decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
801
-
802
-
803
Electromagnetic torque ripple.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
804
The evolution.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
805
ANN architecture.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
806
Electromagnetic torque ripple comparison.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
807
Evolution.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
808
Tip speed ratio.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
809
ANN architecture and configuration.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
810
Mechanical speed.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
811
Wind speed profile.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
812
Correlation coefficient (R).
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
813
Electromagnetic torque.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
814
Training performance (MSE).
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
815
Illustration of BSC control using ANN for WECS.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
816
d-axis current.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
817
System parameters.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
818
q-axis current.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
819
Schematic representation of WECS.
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”
-
820
THD for the stator current i<sub>sb</sub> (ANN-BSC).
Published 2025“…Analysis of the simulation results for the proposed control versus field-oriented control (FOC) shows that the proposed control strategy exhibits less ripples in the electromagnetic torque, with the ripple ratio decreasing significantly from 32.95% to 19.43%. …”