Search alternatives:
larger decrease » marked decrease (Expand Search)
less decrease » mean decrease (Expand Search), levels decreased (Expand Search), largest decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
less decrease » mean decrease (Expand Search), levels decreased (Expand Search), largest decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
1261
Comparison of absolute and relative errors.
Published 2025“…A significant reduction in both error types is observed, with the relative error |<i>X</i><sub><i>r</i></sub>| decreasing from approximately 10<sup>−1</sup> to 10<sup>−8</sup>. …”
-
1262
Rate of convergence for relative errors.
Published 2025“…A significant reduction in both error types is observed, with the relative error |<i>X</i><sub><i>r</i></sub>| decreasing from approximately 10<sup>−1</sup> to 10<sup>−8</sup>. …”
-
1263
Ultrafine Particulate Matter Exacerbates the Risk of Delayed Neural Differentiation: Modulation Role of METTL3-Mediated m<sup>6</sup>A Modification
Published 2025“…By employing <i>N</i>6-methyladenosine (m<sup>6</sup>A) methylated RNA immunoprecipitation sequencing and bioinformatics, we identified <i>Zic1</i> as a key target of PM<sub>0.1</sub>-induced developmental disturbances. …”
-
1264
-
1265
-
1266
-
1267
-
1268
-
1269
-
1270
-
1271
-
1272
Fig 1B raw image.
Published 2025“…From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
-
1273
S1A Fig raw image.
Published 2025“…From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
-
1274
Structure diagram of ensemble model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1275
Fitting formula parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1276
Test plan.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1277
Fitting surface parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1278
Model generalisation validation error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1279
Empirical model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1280
Fitting curve parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”