Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
less decrease » teer decrease (Expand Search), we decrease (Expand Search), levels decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
less decrease » teer decrease (Expand Search), we decrease (Expand Search), levels decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6901
Amino acid metabolic pathways are influenced by the NC1 POM cycle over expression.
Published 2025“…Box and whisker plots of selected metabolites that displayed significant increase or decrease in the NC1 POM cycle producing strain (NC), red boxes, or empty vector producing strain (YC) green boxes. …”
-
6902
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
Published 2025“…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
-
6903
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
Published 2025“…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
-
6904
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
Published 2025“…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
-
6905
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
Published 2025“…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
-
6906
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
Published 2025“…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
-
6907
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
Published 2025“…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
-
6908
-
6909
Dataset visualization diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6910
Dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6911
Performance comparison of different models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6912
C2f and BC2f module structure diagrams.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6913
YOLOv8n detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6914
YOLOv8n-BWG model structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6915
BiFormer structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6916
YOLOv8n-BWG detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6917
GSConv module structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6918
Performance comparison of three loss functions.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6919
mAP0.5 Curves of various models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6920
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”