Showing 5,701 - 5,720 results of 18,045 for search 'significantly ((((((less decrease) OR (largest decrease))) OR (teer decrease))) OR (a decrease))', query time: 0.44s Refine Results
  1. 5701

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  2. 5702

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  3. 5703
  4. 5704
  5. 5705
  6. 5706
  7. 5707

    Supporting information_raw dataset. by Nusrat Jahan Mumu (22305359)

    Published 2025
    “…While HR enhanced most soil P fractions, higher N rates (>N100) tended to decrease labile-Pi (inorganic) fractions by up to 45% suggesting a potential decline in plant-available P. …”
  8. 5708

    Soil phosphorus fractionations procedure [41]. by Nusrat Jahan Mumu (22305359)

    Published 2025
    “…While HR enhanced most soil P fractions, higher N rates (>N100) tended to decrease labile-Pi (inorganic) fractions by up to 45% suggesting a potential decline in plant-available P. …”
  9. 5709

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  10. 5710

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  11. 5711

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  12. 5712

    Graph for maximum Frequency at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  13. 5713

    Graph for maximum Power at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  14. 5714

    Summary of experimentation results. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  15. 5715

    Piezoelectric eel. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  16. 5716

    The effect of IFN-β and Vit D on the IL-1β and IL-10 protein production. by Farzad Nasri (8941850)

    Published 2025
    “…IFN-β and Vit D alone or together decreased IL-1β and IL-10 protein level, significantly in comparison with the control <b>(A, B)</b>. …”
  17. 5717

    Various parameters characterizing Lb related to lung volume or alveolar surface before, during and after bulk alveolarization (adulthood). by Julia Hüttmann (22656283)

    Published 2025
    “…During alveolarization values remain constant. At pnd 21 a significant decrease compared to 3 days old pups is visible. …”
  18. 5718

    GI variables of single-task versus dual-task. by Angeloh Stout (21755757)

    Published 2025
    “…We also observed a more constrained and less efficient center of pressure path, with reduced posterior displacement during the weight shift phase. …”
  19. 5719

    STW variables of single-task versus dual-task. by Angeloh Stout (21755757)

    Published 2025
    “…We also observed a more constrained and less efficient center of pressure path, with reduced posterior displacement during the weight shift phase. …”
  20. 5720

    Predicting Dinitrogen Activation and Coupling with Carbon Dioxide and Other Small Molecules by Methyleneborane: A Combined DFT and Machine Learning Study by Feiying You (22119041)

    Published 2025
    “…N<sub>2</sub> coupling is examined as a concerted step, as CO<sub>2</sub> is a σ donor and a π acceptor. …”