Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
less decrease » we decrease (Expand Search), levels decreased (Expand Search)
teer decrease » greater decrease (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
less decrease » we decrease (Expand Search), levels decreased (Expand Search)
teer decrease » greater decrease (Expand Search)
-
2281
YOLOv8n-BWG detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2282
GSConv module structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2283
Performance comparison of three loss functions.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2284
mAP0.5 Curves of various models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2285
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2286
Comparative diagrams of different indicators.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2287
YOLOv8n structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2288
Geometric model of the binocular system.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2289
Enhanced dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
2290
-
2291
-
2292
S5 Fig - The human medial temporal lobe represents memory items in their ordinal position in both declarative and motor memory domains
Published 2025“…This effect was less pronounced in the PHC, PER and HC, where a decrease in similarity was only observed in lag 5 compared to other lags (lag 5 < 2–4, all <i>p</i><sub><i>corr</i></sub> < .05 and lag 5 < 1, in HC only, <i>p</i><sub><i>corr</i></sub> < .005). …”
-
2293
-
2294
-
2295
-
2296
-
2297
-
2298
-
2299
-
2300