Showing 1,161 - 1,180 results of 7,020 for search 'significantly ((((((less decrease) OR (largest decrease))) OR (teer decrease))) OR (we decrease))', query time: 0.38s Refine Results
  1. 1161

    Simulation parameters [13]. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  2. 1162

    Displacement of soil particles in x direction. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  3. 1163

    Soil particle simulation model. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  4. 1164

    Multi-factor experimental results. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  5. 1165

    Frequency-displacement curve. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  6. 1166

    Bonding bonds between soil particles. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  7. 1167

    Test factor coding. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  8. 1168

    Displacement of soil particles in y direction. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  9. 1169

    Frame structure and key dimensions. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  10. 1170

    Fig 1B raw image. by Rachel K. Meade (22216529)

    Published 2025
    “…From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
  11. 1171

    S1A Fig raw image. by Rachel K. Meade (22216529)

    Published 2025
    “…From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
  12. 1172

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  13. 1173

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  14. 1174

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  15. 1175

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  16. 1176

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  17. 1177

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  18. 1178

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  19. 1179

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  20. 1180

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”