Showing 18,481 - 18,500 results of 18,522 for search 'significantly ((((((less decrease) OR (we decrease))) OR (mean decrease))) OR (a decrease))', query time: 0.63s Refine Results
  1. 18481

    Data augmentation. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  2. 18482

    Data Sheet 1_Interaction between nasal epithelial cells and Tregs in allergic rhinitis responses to allergen via CCL1/CCR8.pdf by Jichao Sha (20756840)

    Published 2025
    “…In the AR + Derp1 group, TSLP was higher, and CCL1 protein levels were decreased. There were no significant differences in IL-25, TGF-β and IL-10. …”
  3. 18483

    Side angle tea picking. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  4. 18484

    Image 1_MicroRNA-27b alleviates septic cardiomyopathy by targeting the Mff/MAVS axis.tif by Xincai Wang (7819064)

    Published 2025
    “…</p>Results<p>Bioinformatics analysis revealed significant downregulation of miR-27b in SCM cardiac tissues (log2FC=-3.9, P<0.001). …”
  5. 18485

    Data Sheet 1_Integrative analysis of DNA methylation, RNA sequencing, and genomic variants in the cancer genome atlas (TCGA) to predict endometrial cancer recurrence.zip by Jin Hwa Hong (6523928)

    Published 2025
    “…These were visualized through volcano plots and heat maps, while decision trees and random forests classified and stratified the samples.</p>Results<p>A machine learning analysis combined with box plots showed that in the copy number-high (CN-H) recurrence group, PARD6G-AS1 had decreased methylation, CSMD1 had increased methylation, and TESC expression was higher than the non-recurrence group. …”
  6. 18486

    Comparison results of ablation experiments. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  7. 18487

    Spato-temporal changes in land use types. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  8. 18488

    Table of dataset division. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  9. 18489

    Pattern indices of landscape levels. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  10. 18490

    Table 1_MicroRNA-27b alleviates septic cardiomyopathy by targeting the Mff/MAVS axis.docx by Xincai Wang (7819064)

    Published 2025
    “…</p>Results<p>Bioinformatics analysis revealed significant downregulation of miR-27b in SCM cardiac tissues (log2FC=-3.9, P<0.001). …”
  11. 18491

    Striking image. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  12. 18492

    Flow chart. by Aysenur Karakus (21192337)

    Published 2025
    “…Both TTH and migraine groups received PRT twice a week for six weeks,</p><p>Results</p><p>Within-group comparisons showed significant decreases in attack frequency, VAS, HIT-6, PCS, and WHODAS-II scores in both groups post-intervention (p<0.001). …”
  13. 18493

    Precision, recall, F1-Score curve. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  14. 18494

    Model comparison experimental results. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  15. 18495

    Slicing aided hyper inference algorithm. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  16. 18496

    Microbiome-host genetic association. by Tamizhini Loganathan (18538349)

    Published 2025
    “…Core microbiome and correlation analysis at the phylum and genus levels identified significant microbiota. Specifically, the abundance of genera such as <i>Pseudomonas</i> and <i>Akkermansia</i> decreased, while <i>Ruminococcus</i> and <i>Allistipes</i> increased, as determined by statistical and machine learning approaches. …”
  17. 18497

    Summary description of the samples. by Tamizhini Loganathan (18538349)

    Published 2025
    “…Core microbiome and correlation analysis at the phylum and genus levels identified significant microbiota. Specifically, the abundance of genera such as <i>Pseudomonas</i> and <i>Akkermansia</i> decreased, while <i>Ruminococcus</i> and <i>Allistipes</i> increased, as determined by statistical and machine learning approaches. …”
  18. 18498

    Improved YOLOv10 network structure. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  19. 18499

    Loss function variation curve. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  20. 18500

    Type level landscape index changes in 1990-2020. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”