Search alternatives:
less decrease » mean decrease (Expand Search), levels decreased (Expand Search), largest decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
less decrease » mean decrease (Expand Search), levels decreased (Expand Search), largest decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
1041
Model generalisation validation error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1042
Empirical model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1043
Fitting curve parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1044
Test instrument.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1045
Empirical model establishment process.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1046
Model prediction error trend chart.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1047
Basic physical parameters of red clay.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1048
BP neural network structure diagram.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1049
Structure diagram of GBDT model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1050
Model prediction error analysis index.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1051
Fitting curve parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1052
Model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
1053
-
1054
Mass spectrometric analyses for crystallins.
Published 2025“…We also determined the changes in crystallin proteomic profiles in water-soluble, water-insoluble-urea-soluble, and water-insoluble-urea-insoluble fractions. …”
-
1055
RNA-seq data showing top 15 downregulated genes.
Published 2025“…We also determined the changes in crystallin proteomic profiles in water-soluble, water-insoluble-urea-soluble, and water-insoluble-urea-insoluble fractions. …”
-
1056
RNA-seq data showing top 15 upregulated genes.
Published 2025“…We also determined the changes in crystallin proteomic profiles in water-soluble, water-insoluble-urea-soluble, and water-insoluble-urea-insoluble fractions. …”
-
1057
Overview of selected datasets.
Published 2025“…</p><p>Results</p><p>Our analysis revealed statistically significant alpha diversity differences in West Africa with decreased microbial diversity in pulmonary tuberculosis patients after two months of antitubercular therapy. …”
-
1058
The sequences of si-RNAs used in this study.
Published 2024“…Our study observed a significant increase in CRNN expression in cSCC samples compared to healthy skin. …”
-
1059
Survey sample distribution.
Published 2025“…The overall efficiency effect on ‘low→high ‘initial endowment farmers shows a decreasing trend. Therefore, in order to ensure the effectiveness of financial precision assistance, we should promote the microcredit policy of the poverty-alleviated population from the aspects of policy stability and implementation precision.…”
-
1060
Primary antibodies used for immunoblot analysis.
Published 2025“…Known cancer dependency on IRE1 entails its enzymatic activation of the transcription factor XBP1s and of regulated RNA decay. We discovered surprisingly that some cancer cell lines require IRE1 but not its enzymatic activity. …”