Showing 1,601 - 1,620 results of 6,800 for search 'significantly ((((((less decrease) OR (we decrease))) OR (teer decrease))) OR (nn decrease))', query time: 0.58s Refine Results
  1. 1601

    Yield Function of the MDPC Model [24]. by Hanqing Guo (12451176)

    Published 2025
    “…The compaction rate initially increases and then decreases with different snow thicknesses; beyond the tread depth, the load significantly affects the maximum compaction rate, which reaches 504 mm/s. …”
  2. 1602

    Baseline clinical data. by Lu-Jin Cheng (21743350)

    Published 2025
    “…In vitro experiments showed that the addition of Gal-9 led to a significant increase in the proportion of TIM-3<sup>+</sup>M1 and TIM-3<sup>+</sup>M2 macrophages and a decrease in M1 cell proportions and M1/M2 ratio. …”
  3. 1603

    Tailoring Ionic Conductivity of Polymeric Ionic Liquid Block Copolymers through Morphology Control by Samuel K. J. Adotey (22425591)

    Published 2025
    “…We further show that transport-blocking defects are largely absent from PIL-rich morphologies having nonionic cylindrical or spherical domains embedded in a PIL matrix. …”
  4. 1604

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  5. 1605

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  6. 1606

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  7. 1607

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  8. 1608

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  9. 1609

    Primer sequences. by Koichi Yoshimoto (9298643)

    Published 2024
    “…We examined the mRNA expression of <i>Ddit3</i> (CHOP) and <i>Casp3</i> (caspase-3) on day one after the surgery; mRNA expression of both genes appeared to decrease in the KUS121 group, as compared with the control group, although differences between groups were not significant. …”
  10. 1610
  11. 1611
  12. 1612

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  13. 1613

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  14. 1614

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  15. 1615

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  16. 1616

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  17. 1617

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  18. 1618

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  19. 1619

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  20. 1620

    ASIR prediction from 2020 to 2030 by sex. by Majed M. Ramadan (22379116)

    Published 2025
    “…Bahrain also saw a significant increase in male Age-standardized death rate (ASDR), despite all other countries experiencing a decrease. …”