Showing 1,761 - 1,780 results of 6,800 for search 'significantly ((((((less decrease) OR (we decrease))) OR (teer decrease))) OR (nn decrease))', query time: 0.45s Refine Results
  1. 1761

    Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions by Amie M. Solosky (20320255)

    Published 2024
    “…Therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multiomics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. …”
  2. 1762

    Subject characteristics. by Barbara Mayr (7065950)

    Published 2024
    “…We found a significant increase both times for miR-103a (glycolysis, %change base: +12%, post +17%), miR-146a (inflammation, %change base: +20%, post +21%), and miR-222 (cardiac remodeling, %change base: +10%, post +21%), while miR-30a (inflammation, %change base: -27%, post: -38%) decreased significantly (all p≤0.043).…”
  3. 1763

    Raw data. by Barbara Mayr (7065950)

    Published 2024
    “…We found a significant increase both times for miR-103a (glycolysis, %change base: +12%, post +17%), miR-146a (inflammation, %change base: +20%, post +21%), and miR-222 (cardiac remodeling, %change base: +10%, post +21%), while miR-30a (inflammation, %change base: -27%, post: -38%) decreased significantly (all p≤0.043).…”
  4. 1764

    Supplementary information–dataset. by Leriana Garcia Reis (12646978)

    Published 2024
    “…Whereas continuous light increased gestation length and tended to increase PN litter growth. Here we report that patterns of grams of feed intake, an indicator of feeding activity, were affected by light, diet, period of the day (day versus night) and physiological state (gestation and lactation), with significant interactions among all these variables (P<0.05). …”
  5. 1765

    Flow diagram. by Barbara Mayr (7065950)

    Published 2024
    “…We found a significant increase both times for miR-103a (glycolysis, %change base: +12%, post +17%), miR-146a (inflammation, %change base: +20%, post +21%), and miR-222 (cardiac remodeling, %change base: +10%, post +21%), while miR-30a (inflammation, %change base: -27%, post: -38%) decreased significantly (all p≤0.043).…”
  6. 1766

    Experimental timeline overview. by Leriana Garcia Reis (12646978)

    Published 2024
    “…Whereas continuous light increased gestation length and tended to increase PN litter growth. Here we report that patterns of grams of feed intake, an indicator of feeding activity, were affected by light, diet, period of the day (day versus night) and physiological state (gestation and lactation), with significant interactions among all these variables (P<0.05). …”
  7. 1767

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  8. 1768

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  9. 1769

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  10. 1770

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  11. 1771

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  12. 1772

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  13. 1773

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  14. 1774

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  15. 1775

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  16. 1776

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  17. 1777

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  18. 1778

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  19. 1779

    Flowchart of the study. by Flavia Furlaneto (20161022)

    Published 2024
    “…At species level, <i>Schaalia</i> spp., <i>Streptococcus gordonii</i>, and <i>Leptotrichia wadei</i> increased in Placebo and decreased in the Probiotic group after treatment. <i>Granulicatella adiacens</i> decreased significantly after the probiotic therapy, while <i>Saccharibacteria</i> (TM7) spp., <i>Solobacterium moorei</i>, and <i>Catonella morbi</i> increased significantly. …”
  20. 1780

    Heat map showing correlations between comet assay parameters, and warm and cold ischemia times. by Miroslava Jandová (22553132)

    Published 2025
    “…<p>Red values are significant at p < 0.05. Negative values mean that there is a “the more, the less” relationship between the quantities, i.e., as one quantity increases, the other quantity decreases. …”