Showing 3,441 - 3,460 results of 9,439 for search 'significantly ((((((linear decrease) OR (we decrease))) OR (nn decrease))) OR (mean decrease))', query time: 0.55s Refine Results
  1. 3441

    Making Cells as a “Nirvana Phoenix”: Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots by Juan Kong (2230867)

    Published 2025
    “…However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)<sub>2</sub>) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag<sub>2</sub>Se QDs. …”
  2. 3442

    Making Cells as a “Nirvana Phoenix”: Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots by Juan Kong (2230867)

    Published 2025
    “…However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)<sub>2</sub>) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag<sub>2</sub>Se QDs. …”
  3. 3443

    The chemical structure of melatonin. by Xiaoyi Shi (3825754)

    Published 2024
    “…Our results indicated that PGAM5 was significantly elevated by I/R injury, and predominantly localized in the necrosis area. …”
  4. 3444

    Regulation of Rice Grain Weight by Fatty Acid Composition: Unveiling the Mechanistic Roles of <i>OsLIN6</i> by OsARF12 by Haoran Tian (6706925)

    Published 2024
    “…However, the inner mechanism is still unclear and needs to be further studied. In this study, we identified that oleic acid (C18:1) negatively correlates while linoleic acid (C18:2) positively correlates with rice grain weight. …”
  5. 3445

    Modulating the Coordination Environment of Cu-Embedded Mo<i>X</i><sub>2</sub> (<i>X</i> = S, Se, and Te) Monolayers for Electrocatalytic Reduction of CO<sub>2</sub> to CH<sub>4</su... by Thamarainathan Doulassiramane (17382128)

    Published 2024
    “…We found that the catalytic activity is mainly due to the level of antibonding states filling between the Cu atom and *OCHOH intermediate. …”
  6. 3446

    Analysis of differential microbiome and classification prediction model between case and control groups. by Chuan Zhang (187157)

    Published 2025
    “…The relative importance of each genus in the predictive model was evaluated using the mean decreasing accuracy and the Gini coefficient.…”
  7. 3447

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  8. 3448

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  9. 3449

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  10. 3450

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  11. 3451

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  12. 3452

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  13. 3453

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  14. 3454

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  15. 3455

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  16. 3456

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  17. 3457

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  18. 3458

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  19. 3459

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  20. 3460

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”