Showing 4,961 - 4,980 results of 18,540 for search 'significantly ((((((lower decrease) OR (larger decrease))) OR (a decrease))) OR (linear decrease))', query time: 0.62s Refine Results
  1. 4961

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  2. 4962

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  3. 4963

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  4. 4964

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  5. 4965

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  6. 4966

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  7. 4967

    <i>Oenocarpus bacaba</i> palm tree (A) and fruit (B). by Eudes Alves Simões-Neto (19697968)

    Published 2024
    “…Serological cure was achieved in 34.6% of cases, and IgG titers decreased in 15.3%.</p><p>Conclusions and significance</p><p>We encountered several barriers in managing ACD, including population vulnerability, reliance on outdated diagnostic techniques, lack of standardized molecular biology methods, and limited therapeutic options. …”
  8. 4968
  9. 4969
  10. 4970
  11. 4971

    Hardware comparison. by Ariel Burman (20329776)

    Published 2024
    “…This results in three significant advantages: the footprint area decreases by more than eight times, leading to reduced power consumption and a faster response to non-stationary signals.…”
  12. 4972
  13. 4973
  14. 4974

    MXene-Coated Liquid Metal Nanodroplet Aggregates by Mason Zadan (8667870)

    Published 2025
    “…In contrast to silicone-based composites containing LM droplets or MXene nanosheets alone, these MXene-LM-silicone-based composites exhibit an exponential increase in thermal and electrical conductivity with decreasing interfacial thickness with significantly lower LM volume fractions (25 vol %) while avoiding LM rupture and bleed-out. …”
  15. 4975

    MXene-Coated Liquid Metal Nanodroplet Aggregates by Mason Zadan (8667870)

    Published 2025
    “…In contrast to silicone-based composites containing LM droplets or MXene nanosheets alone, these MXene-LM-silicone-based composites exhibit an exponential increase in thermal and electrical conductivity with decreasing interfacial thickness with significantly lower LM volume fractions (25 vol %) while avoiding LM rupture and bleed-out. …”
  16. 4976

    MXene-Coated Liquid Metal Nanodroplet Aggregates by Mason Zadan (8667870)

    Published 2025
    “…In contrast to silicone-based composites containing LM droplets or MXene nanosheets alone, these MXene-LM-silicone-based composites exhibit an exponential increase in thermal and electrical conductivity with decreasing interfacial thickness with significantly lower LM volume fractions (25 vol %) while avoiding LM rupture and bleed-out. …”
  17. 4977
  18. 4978
  19. 4979
  20. 4980