Search alternatives:
larger decrease » marked decrease (Expand Search)
lower decrease » linear decrease (Expand Search), we decrease (Expand Search), showed decreased (Expand Search)
teer decrease » greater decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
lower decrease » linear decrease (Expand Search), we decrease (Expand Search), showed decreased (Expand Search)
teer decrease » greater decrease (Expand Search)
-
3361
Comparison between actual and predicted values.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3362
Sample points and numerical simulation results.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3363
Three-dimensional heat transfer model parameters.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3364
Optimal Latin square sampling distribution.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3365
2C discharge rate grid independence test.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3366
Feasibility diagram of design points.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3367
Related parameters of square LIBs.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3368
Multi objective optimization design process.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3369
Battery pack model.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3370
Value ranges of three representative points.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3371
Signalized intersection in Kunshan.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3372
Dynamic system state in demand scenarios 2.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3373
Survey data of the intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3374
The main notations used in this paper.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3375
Feedback elimination for feedback queue.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3376
A typical cross signalized intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3377
Four signal stages for the intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3378
Dynamic system state in demand scenarios 3.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3379
Dynamic system state in demand scenarios 1.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3380
Characteristics comparison of related literature.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”