Search alternatives:
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), we decrease (Expand Search), showed decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), we decrease (Expand Search), showed decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
2361
The <i>ENT2</i> knockout effects on CRC proliferation and survival.
Published 2025“…<p>(A) Cell viability of HT29/KO as measured by the MTT assay. It was significantly lower in both HKO1 and HKO2 than in the control NTC (B) Cell viability of DLD1/KO with no significant difference between the DKO clone and NTC cells. …”
-
2362
Timeline for study enrollment.
Published 2024“…</p><p>Conclusions</p><p>Negative COVID-19 experiences were significantly associated with more severe depression and anxiety in Ugandan caregivers, regardless of their children’s malaria status. …”
-
2363
Dataset used in the manuscript.
Published 2024“…</p><p>Conclusions</p><p>Negative COVID-19 experiences were significantly associated with more severe depression and anxiety in Ugandan caregivers, regardless of their children’s malaria status. …”
-
2364
Reversible Adsorption and Interfacial Photoisomerization of Azobenzene Surfactants Studied by QCM
Published 2025“…Using quartz crystal microbalance (QCM) measurements, we show that the interfacial mass change is governed by the isomeric composition in the bulk solution: the <i>trans</i> isomer exhibits strong adsorption, while the <i>cis</i> isomer is significantly less surface-active. We further quantify the photoisomerization kinetics at the interface, revealing that the isomerization rate constant decreases with a lower <i>trans</i> isomer concentration due to a transition from a diffuse multilayer to a confined double-layer structure. …”
-
2365
Evidence of the Giant Barocaloric Effect in the PVA-Slime System by Molecular Dynamics Simulations
Published 2025“…This, combined with the applied simulated pressure, decreases the mobility of the polymer chains, lowering their kinetic energy while favoring potential energy. …”
-
2366
Evidence of the Giant Barocaloric Effect in the PVA-Slime System by Molecular Dynamics Simulations
Published 2025“…This, combined with the applied simulated pressure, decreases the mobility of the polymer chains, lowering their kinetic energy while favoring potential energy. …”
-
2367
-
2368
-
2369
-
2370
-
2371
The overall framework of CARAFE.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2372
KPD-YOLOv7-GD network structure diagram.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2373
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2374
Comparison of different pruning rates.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2375
Comparison of experimental results at ablation.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2376
Result of comparison of different lightweight.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2377
DyHead Structure.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2378
The parameters of the training phase.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2379
Structure of GSConv network.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2380
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”