بدائل البحث:
larger decrease » marked decrease (توسيع البحث)
lower decrease » linear decrease (توسيع البحث), teer decrease (توسيع البحث), we decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), gy decreased (توسيع البحث)
larger decrease » marked decrease (توسيع البحث)
lower decrease » linear decrease (توسيع البحث), teer decrease (توسيع البحث), we decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), gy decreased (توسيع البحث)
-
3321
Estimation procedure flow-chart.
منشور في 2025"…We take advantage of 40 years of variation in daily land surface temperature data, finding that one additional exceptionally hot day significantly lowers wellbeing, by roughly 0.5% on average. …"
-
3322
Structural model outline.
منشور في 2025"…We take advantage of 40 years of variation in daily land surface temperature data, finding that one additional exceptionally hot day significantly lowers wellbeing, by roughly 0.5% on average. …"
-
3323
OVX educes bone density of femur.
منشور في 2025"…Compared to Sham rats, OVX tats had a significant decrease in bone mass and impaired bone micro structure: (L) BMD, (M) BV, (N) BV/TV, (O) Tb.N,(P) Tb.Sp, and (Q) Tb.Th. …"
-
3324
<b> </b> Energy efficiency and gas volume comparison.
منشور في 2025"…CO₂ yield was higher in the control group at lower temperatures, while the integrated system consistently produced more biochar and biogas. …"
-
3325
Model validation of kinetic parameters.
منشور في 2025"…CO₂ yield was higher in the control group at lower temperatures, while the integrated system consistently produced more biochar and biogas. …"
-
3326
Dataset visualization diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3327
Dataset sample images.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3328
Performance comparison of different models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3329
C2f and BC2f module structure diagrams.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3330
YOLOv8n detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3331
YOLOv8n-BWG model structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3332
BiFormer structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3333
YOLOv8n-BWG detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3334
GSConv module structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3335
Performance comparison of three loss functions.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3336
mAP0.5 Curves of various models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3337
Network loss function change diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3338
Comparative diagrams of different indicators.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3339
YOLOv8n structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
3340
Geometric model of the binocular system.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"