يعرض 3,381 - 3,400 نتائج من 6,336 نتيجة بحث عن 'significantly ((((((lower decrease) OR (nn decrease))) OR (teer decrease))) OR (mean decrease))', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 3381
  2. 3382
  3. 3383

    Loading mode. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  4. 3384

    Model and meshes. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  5. 3385

    Shearing forces in the tension zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  6. 3386

    Pile foundation section. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  7. 3387

    Shearing force in the pressure zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  8. 3388

    Strain-stress maps of vertical pile foundation. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  9. 3389

    Displacement-inclination variation graph. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  10. 3390

    Soil modeling and mechanical parameters. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  11. 3391

    Location of monitored piles. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  12. 3392

    Axial force in the pressure zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  13. 3393

    Pile-soil interaction. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  14. 3394

    Bending moment in the tension zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  15. 3395

    Sketch of forces on vertical and inclined piles. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  16. 3396

    Displacement cloud maps. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  17. 3397

    Morphing mesh. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  18. 3398

    Bending moment in the pressure zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  19. 3399

    Axial forces in the tension zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  20. 3400

    VPF and VIPF. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"