Showing 3,161 - 3,180 results of 9,300 for search 'significantly ((((((lower decrease) OR (we decrease))) OR (linear decrease))) OR (teer decrease))', query time: 0.60s Refine Results
  1. 3161

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  2. 3162

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  3. 3163

    The overall framework of CARAFE. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  4. 3164

    KPD-YOLOv7-GD network structure diagram. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  5. 3165

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  6. 3166

    Comparison of different pruning rates. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  7. 3167

    Comparison of experimental results at ablation. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  8. 3168

    Result of comparison of different lightweight. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  9. 3169

    DyHead Structure. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  10. 3170

    The parameters of the training phase. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  11. 3171

    Structure of GSConv network. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  12. 3172

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  13. 3173

    Improved model distillation structure. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  14. 3174

    S1 Graphical abstract - by Huimin Xian (20390006)

    Published 2024
    “…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
  15. 3175

    Procedural characteristics. by Huimin Xian (20390006)

    Published 2024
    “…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
  16. 3176

    Clinical characteristics. by Huimin Xian (20390006)

    Published 2024
    “…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
  17. 3177

    Study flowchart. by Huimin Xian (20390006)

    Published 2024
    “…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
  18. 3178

    Data. by Huimin Xian (20390006)

    Published 2024
    “…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
  19. 3179

    Excel data extraction. by Berihun Agegn Mengistie (18781020)

    Published 2025
    “…Early detection and treatment of precancerous cervical lesions and human papillomavirus (HPV) infection are strongly advised to decrease the incidence of cervical cancer and death. …”
  20. 3180

    The upper plots show the changes in ZMK for summer and autumn. by Peyman Karami (5909264)

    Published 2025
    “…<p>Red indicates an increasing trend and green indicates a decreasing trend in fire density. The lower plots show significant increasing and decreasing trends for different biomes in Iran.…”