يعرض 6,741 - 6,760 نتائج من 18,617 نتيجة بحث عن 'significantly ((((((mean decrease) OR (a decrease))) OR (linear decrease))) OR (greater decrease))', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 6741
  2. 6742
  3. 6743
  4. 6744
  5. 6745

    PRMT5 regulates alternative splicing landscape under hypoxia. حسب Srinivas Abhishek Mutnuru (22513457)

    منشور في 2025
    "…<p><b>A)</b> Pie chart showing distribution of different types of significant AS events (FDR < 0.05) in shCTRL vs. shPRMT5 MDA-MB-231 cells under hypoxia. …"
  6. 6746
  7. 6747
  8. 6748
  9. 6749
  10. 6750

    Data of AFR(%) of axial surface for each group. حسب Long Li (6555)

    منشور في 2025
    "…In the adhesive retention strength experiment, prostheses and abutments were bonded using permanent resin cement; retention strength was measured using a universal testing machine. Data were analyzed using one-way analysis of variance (ANOVA) or Welch’s ANOVA, followed by Tukey’s honestly significant difference test.…"
  11. 6751
  12. 6752
  13. 6753
  14. 6754
  15. 6755

    Comparison with Existing Studies. حسب Na Zhao (112953)

    منشور في 2025
    "…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …"
  16. 6756

    Specimen Preparation and Experimental Setup. حسب Na Zhao (112953)

    منشور في 2025
    "…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …"
  17. 6757

    UCS texts data. حسب Na Zhao (112953)

    منشور في 2025
    "…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …"
  18. 6758
  19. 6759
  20. 6760