Search alternatives:
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5081
Continuing evolution of H5N1 highly pathogenic avian influenza viruses of clade 2.3.2.1a G2 genotype in domestic poultry of Bangladesh during 2018–2021
Published 2024“…Consequently, antigenic analysis revealed a significant loss of cross-reactivity between viruses from different host species and periods. …”
-
5082
-
5083
Characteristics of included studies.
Published 2025“…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
-
5084
Sensitivity analysis for acute fatigue subscale.
Published 2025“…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
-
5085
Factors related to nurses’ occupational fatigue.
Published 2025“…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
-
5086
Sensitivity analysis for inter-shift subscale.
Published 2025“…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
-
5087
Reinforced sample destruction mode.
Published 2025“…The suggested optimised parameters are as follows: a filling rate of 3 mL/min, a cementitious solution concentration of 0.5 mol/L to 1 mol/L, and a reasonable number of filling. …”
-
5088
One-dimensional sand column test conditions.
Published 2025“…The suggested optimised parameters are as follows: a filling rate of 3 mL/min, a cementitious solution concentration of 0.5 mol/L to 1 mol/L, and a reasonable number of filling. …”
-
5089
FK506 significantly potentiates caspofungin activity against tolerant <i>C. tropicalis</i> strains, reversing tolerance phenotypes in both <i>in vitro</i> and <i>in vivo</i> models...
Published 2025“…Survival rates were assessed using Kaplan-Meier analysis, and statistical significance was determined using a log-rank (Mantel-Cox) test. …”
-
5090
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5091
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5092
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5093
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5094
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5095
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5096
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5097
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5098
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5099
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5100
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”