Showing 4,801 - 4,820 results of 18,660 for search 'significantly ((((((mean decrease) OR (a decrease))) OR (teer decrease))) OR (observed decrease))', query time: 0.68s Refine Results
  1. 4801
  2. 4802
  3. 4803

    The protocol of the maximal cycle-ergometer test. by Kazufumi Hisamoto (21416905)

    Published 2025
    “…Therefore, we aimed to investigate whether mild hyperbaric hyperoxia enhances aerobic capacity and decreases cardiopulmonary stress during exercise with a particular focus on the ventilatory threshold (VT). …”
  4. 4804
  5. 4805
  6. 4806
  7. 4807

    Impact of sludge dosage on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  8. 4808

    Impact of settling time on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  9. 4809

    ANOVAs for the response surface of Eq (2). by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  10. 4810

    Impact of CPAM dosage on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  11. 4811

    Impact of sewage pH on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  12. 4812

    Impact of PAC dosage on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  13. 4813
  14. 4814
  15. 4815
  16. 4816
  17. 4817
  18. 4818
  19. 4819
  20. 4820