Showing 7,681 - 7,700 results of 18,442 for search 'significantly ((((((nn decrease) OR (linear decrease))) OR (a decrease))) OR (mean decrease))', query time: 0.44s Refine Results
  1. 7681

    MGPC module. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  2. 7682

    Comparative experiment. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  3. 7683

    Pruning experiment. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  4. 7684

    Parameter setting table. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  5. 7685

    DTADH module. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  6. 7686

    Ablation experiment. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  7. 7687

    Multi scale detection. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  8. 7688

    MFDPN module. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  9. 7689

    Detection effect of different sizes. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  10. 7690

    Radar chart comparing indicators. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  11. 7691

    MFD-YOLO structure. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  12. 7692

    Detection results of each category. by Bo Tong (2138632)

    Published 2025
    “…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
  13. 7693
  14. 7694

    Connectivity (frontal, axial, and sagittal planes) and color maps of between-group analysis of the tDCS intervention. by Rael Lopes Alves (7877942)

    Published 2024
    “…<p>The colored edge represents connections with significant differences. (A) Maps shows decreased connectivity between left ACC and right INS in the HB-a-tDCS on DLPFC group in the delta frequency band which present large effect size (Cohen’s d = 1.69). …”
  15. 7695
  16. 7696
  17. 7697

    Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection by Carlos E. S. Bernardes (7183481)

    Published 2025
    “…As cooling progresses, they become more compact, a process accompanied by a reduction in water content, which is more significant as the solution concentration increases. …”
  18. 7698

    Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection by Carlos E. S. Bernardes (7183481)

    Published 2025
    “…As cooling progresses, they become more compact, a process accompanied by a reduction in water content, which is more significant as the solution concentration increases. …”
  19. 7699

    Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection by Carlos E. S. Bernardes (7183481)

    Published 2025
    “…As cooling progresses, they become more compact, a process accompanied by a reduction in water content, which is more significant as the solution concentration increases. …”
  20. 7700

    Datasheet1_Short-term effects of temperature and air pollution on mortality in Norway: a nationwide cohort-based study.docx by Shilpa Rao (280703)

    Published 2024
    “…</p>Results<p>We observed an increased risk of natural-cause mortality (OR: 1.26 95% CI: 1.09, 1.46) for a decrease in temperature from the minimum mortality temperature (MMT, 17.6°C) to the 1st percentile and an increased risk of cardiovascular mortality (OR: 1.32, 95% CI: 1.04, 1.67) for a decrease from MMT (16.1°C) to the 1st percentile. …”