Showing 13,101 - 13,120 results of 18,442 for search 'significantly ((((((nn decrease) OR (linear decrease))) OR (a decrease))) OR (mean decrease))', query time: 0.67s Refine Results
  1. 13101

    Video 2_Real-time segmentation and phenotypic analysis of rice seeds using YOLOv11-LA and RiceLCNN.mp4 by Dejia Zhang (18526510)

    Published 2025
    “…These modifications not only improve detection accuracy but also significantly reduce the number of parameters by 63.2% and decrease computational complexity by 51.6%. …”
  2. 13102

    Generated spline library. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  3. 13103

    Correlation coefficient matrix. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  4. 13104

    Actual measurement of shape errors. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  5. 13105

    RMSE versus learning rate. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  6. 13106

    RMSE versus training parameters. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  7. 13107

    Assembly process of machine recognition form. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  8. 13108

    Process of steel truss incremental launching. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  9. 13109

    CGAN and AutoML stacking device. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  10. 13110

    Comprehensive prediction process of shape errors. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  11. 13111

    Shape error manual calculation process. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  12. 13112

    Data Sheet 1_Temperature influences mood: evidence from 11 years of Baidu index data in Chinese provincial capitals.csv by Mengjiao Yin (10995604)

    Published 2025
    “…Conversely, a 1°C increase in DTR led to decreases of 30.35%, 31.19%, and 15.41% in these indices (p < 0.05). …”
  13. 13113

    U-wave estimates versus R-matrix noise variance. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  14. 13114

    Sliding window process. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  15. 13115

    Original record form of error matrix. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  16. 13116

    Form for machine recognition. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  17. 13117

    RMSE versus architectural parameters. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  18. 13118

    Kalman process. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  19. 13119

    Attention mechanism. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  20. 13120

    Shape error measurement results statistics. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”