بدائل البحث:
linear decrease » linear increase (توسيع البحث)
teer decrease » greater decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), gy decreased (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
teer decrease » greater decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), gy decreased (توسيع البحث)
-
1741
DyHead Structure.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
1742
The parameters of the training phase.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
1743
Structure of GSConv network.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
1744
Comparison experiment of accuracy improvement.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
1745
Improved model distillation structure.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
1746
-
1747
-
1748
-
1749
-
1750
-
1751
-
1752
-
1753
-
1754
-
1755
-
1756
Performance comparison of ML models.
منشور في 2025"…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1757
Comparative data of different soil samples.
منشور في 2025"…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1758
Confusion matrix of random forest model.
منشور في 2025"…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1759
Sensor value scenario for fuzzy logic algorithm.
منشور في 2025"…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"
-
1760
Evaluation metrics of selected ML models.
منشور في 2025"…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …"