Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5501
MIT dataset expansion quantities and Proportions.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5502
Experimental hardware and software environment.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5503
PCA-CGAN K-fold experiment table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5504
Classification model parameter settings.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5505
MIT-BIH expanded dataset proportion chart.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5506
AUROC Graphs of RF Model and ResNet.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5507
PCA-CGAN Model Workflow Diagram.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5508
Structural Diagrams of RF Model and ResNet Model.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5509
PCA-CGAN model convergence curve.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5510
PCA-CGAN Structure Diagram.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5511
Comparison of Model Five-classification Results.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5512
PCAECG-GAN K-fold experiment table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5513
PCA-CGAN Pseudocode Table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5514
PCA-CGAN Ablation Experiment Results.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. …”
-
5515
-
5516
Differences in the muscle force of anterior (A), middle (B), and posterior (C) deltoids in models with and without cuff tears.
Published 2025“…<p>The black bar indicates a significant increase in muscle force compared with the Intact model, and the gray bar indicates a significant decrease in muscle force compared with the Intact model.…”
-
5517
Differences in the muscle force of teres minor (A) and long head biceps (B) in models with and without cuff tears.
Published 2025“…<p>The black bar indicates a significant increase in muscle force compared with the Intact model, and the gray bar indicates a significant decrease in muscle force compared with the Intact model.…”
-
5518
Macroscopic morphology of 17-4PH-xTiC coatings.
Published 2025“…Compared to the commercial blade, the wear of the laser-cladded blade was decreased by 67%. This study successfully applied wear-resistant laser cladding coatings on the surface of harvester blades with small substrate thickness, significantly extending their service life.…”
-
5519
SEM morphology of 17-4PH-xTiC coatings.
Published 2025“…Compared to the commercial blade, the wear of the laser-cladded blade was decreased by 67%. This study successfully applied wear-resistant laser cladding coatings on the surface of harvester blades with small substrate thickness, significantly extending their service life.…”
-
5520
XRD patterns of 17-4PH-xTiC coatings.
Published 2025“…Compared to the commercial blade, the wear of the laser-cladded blade was decreased by 67%. This study successfully applied wear-resistant laser cladding coatings on the surface of harvester blades with small substrate thickness, significantly extending their service life.…”