Showing 921 - 940 results of 8,849 for search 'significantly ((((((teer decrease) OR (greatest decrease))) OR (we decrease))) OR (mean decrease))', query time: 0.67s Refine Results
  1. 921
  2. 922

    Prolonged starvation leads to a delay in cell cycle re-entry and decrease in H3K27ac in Vasa2+/Piwi1+ cells. by Eudald Pascual-Carreras (12115380)

    Published 2025
    “…During starvation (T<sub>5ds</sub>, T<sub>20ds</sub>), MFI levels of H3K27ac progressively decreased <b>(F)</b> while levels H3K27me3 did not change significantly <b>(G)</b>. …”
  3. 923
  4. 924

    Supplementary Material for: Significant Dry Weight Reduction After Transition from Peritoneal Dialysis to Hemodialysis by Lin Y.-T. (17065287)

    Published 2025
    “…After transitioning to HD, body weight decreased significantly, with a reduction of -2.8 kg at one month, -5.3 kg at three months, and -7.5 kg one year post-transition. …”
  5. 925

    Cohort characteristics. by Vincent Pey (21433304)

    Published 2025
    “…</p><p>Results</p><p>Upon initiation of CPB we observed a significant decrease in arterial whole blood redox potential (101.90 mV + /- 11.52 vs. 41.80 mV + /- 10,26; p < 0.0001). …”
  6. 926

    Analytical framework and statistical methods. by Na Chen (153323)

    Published 2024
    “…Our findings reveal significant variations in income insecurity and social protection responses across these groups. the pandemic had a significant impact on household incomes globally, with lower-middle-income countries experiencing the most significant income reductions. …”
  7. 927

    Theoretical frameworks of social protection. by Na Chen (153323)

    Published 2024
    “…Our findings reveal significant variations in income insecurity and social protection responses across these groups. the pandemic had a significant impact on household incomes globally, with lower-middle-income countries experiencing the most significant income reductions. …”
  8. 928

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  9. 929

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  10. 930

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  11. 931

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  12. 932

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  13. 933

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  14. 934

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  15. 935

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  16. 936

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  17. 937

    Model prediction error trend chart. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  18. 938

    Basic physical parameters of red clay. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  19. 939

    BP neural network structure diagram. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  20. 940

    Structure diagram of GBDT model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”