Showing 921 - 940 results of 1,826 for search 'significantly ((((((teer decrease) OR (larger decrease))) OR (nn decrease))) OR (linear decrease))', query time: 0.60s Refine Results
  1. 921
  2. 922

    Data extracted from the included studies. by Jesse Hill (19929059)

    Published 2024
    “…Emergency departments with longer baseline ED LOS showed significantly larger reductions in LOS after ADP implementation. …”
  3. 923

    Risk of bias assessments for controlled trials. by Jesse Hill (19929059)

    Published 2024
    “…Emergency departments with longer baseline ED LOS showed significantly larger reductions in LOS after ADP implementation. …”
  4. 924

    LSTM model. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  5. 925

    CNN model. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  6. 926

    Ceramic bearings. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  7. 927

    Geometric contact arc length model. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  8. 928

    Indentation fracture mechanics model. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  9. 929

    Grinding particle cutting machining model. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  10. 930

    Three stages of abrasive cutting process. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  11. 931

    CNN-LSTM action recognition process. by Longfei Gao (698900)

    Published 2025
    “…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
  12. 932

    Simulation datasets. by Xiao Mo (2430355)

    Published 2025
    “…These results offer significant theoretical guidance for the design and improvement of needle-free injection.…”
  13. 933

    Differences in magnitude and velocity of decay of the different compartments of the viral reservoir. by Maria C. Puertas (8801768)

    Published 2025
    “…<p>A. The overall decrease in each fraction of the viral reservoir during the first year after ART initiation is expressed as the ratio of week 48 to baseline values. …”
  14. 934
  15. 935
  16. 936
  17. 937

    Mean parameter values for the selected crops. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  18. 938

    Performance comparison of ML models. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  19. 939

    Comparative data of different soil samples. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  20. 940

    Confusion matrix of random forest model. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”