Search alternatives:
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
921
-
922
Data extracted from the included studies.
Published 2024“…Emergency departments with longer baseline ED LOS showed significantly larger reductions in LOS after ADP implementation. …”
-
923
Risk of bias assessments for controlled trials.
Published 2024“…Emergency departments with longer baseline ED LOS showed significantly larger reductions in LOS after ADP implementation. …”
-
924
LSTM model.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
925
CNN model.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
926
Ceramic bearings.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
927
Geometric contact arc length model.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
928
Indentation fracture mechanics model.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
929
Grinding particle cutting machining model.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
930
Three stages of abrasive cutting process.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
931
CNN-LSTM action recognition process.
Published 2025“…According to the experimental results, when the grinding depth increases to 21 μm, the average training loss of the model further decreases to 0.03622, and the surface roughness Ra value significantly decreases to 0.1624 μm. …”
-
932
Simulation datasets.
Published 2025“…These results offer significant theoretical guidance for the design and improvement of needle-free injection.…”
-
933
Differences in magnitude and velocity of decay of the different compartments of the viral reservoir.
Published 2025“…<p>A. The overall decrease in each fraction of the viral reservoir during the first year after ART initiation is expressed as the ratio of week 48 to baseline values. …”
-
934
-
935
-
936
-
937
Mean parameter values for the selected crops.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
938
Performance comparison of ML models.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
939
Comparative data of different soil samples.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
940
Confusion matrix of random forest model.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”