Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
1341
-
1342
-
1343
-
1344
-
1345
-
1346
-
1347
Baseline characteristics of participants.
Published 2025“…</p><p>Results</p><p>After DRG implementation, the logarithmic mean of total hospitalization expenditures decreased significantly (3.914 ± 0.837 vs. 3.872 ± 1.004), while rates of unplanned readmissions, unplanned reoperations, postoperative complications, and patient complaints within 30 days increased significantly (3.784% vs 4.214%, 0.083% vs 0.166%, 0.207% vs 0.258%, 3.741% vs 5.133%). …”
-
1348
The framework diagram of this study.
Published 2025“…</p><p>Results</p><p>After DRG implementation, the logarithmic mean of total hospitalization expenditures decreased significantly (3.914 ± 0.837 vs. 3.872 ± 1.004), while rates of unplanned readmissions, unplanned reoperations, postoperative complications, and patient complaints within 30 days increased significantly (3.784% vs 4.214%, 0.083% vs 0.166%, 0.207% vs 0.258%, 3.741% vs 5.133%). …”
-
1349
-
1350
-
1351
-
1352
-
1353
-
1354
-
1355
The overall framework of CARAFE.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
1356
KPD-YOLOv7-GD network structure diagram.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
1357
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
1358
Comparison of different pruning rates.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
1359
Comparison of experimental results at ablation.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
1360
Result of comparison of different lightweight.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”