Showing 1,381 - 1,400 results of 18,044 for search 'significantly ((((((teer decrease) OR (we decrease))) OR (greatest decrease))) OR (a decrease))', query time: 0.49s Refine Results
  1. 1381
  2. 1382
  3. 1383
  4. 1384
  5. 1385

    Chitosan-Based Thermal-Coagulation Hydrogel System Driven by Multiple Interactions: Oxidation-Induced Fast Gelation and Enhanced Performance by Yifan Liu (219681)

    Published 2025
    “…By controlling the grafting rate, it was found that the solution pH and p<i>K</i><sub>a</sub> of CS-C were both affected by the decrease of the amino groups, whereas the gelation time and the required β-GP content for gelling significantly decreased. …”
  6. 1386

    Chitosan-Based Thermal-Coagulation Hydrogel System Driven by Multiple Interactions: Oxidation-Induced Fast Gelation and Enhanced Performance by Yifan Liu (219681)

    Published 2025
    “…By controlling the grafting rate, it was found that the solution pH and p<i>K</i><sub>a</sub> of CS-C were both affected by the decrease of the amino groups, whereas the gelation time and the required β-GP content for gelling significantly decreased. …”
  7. 1387

    Chitosan-Based Thermal-Coagulation Hydrogel System Driven by Multiple Interactions: Oxidation-Induced Fast Gelation and Enhanced Performance by Yifan Liu (219681)

    Published 2025
    “…By controlling the grafting rate, it was found that the solution pH and p<i>K</i><sub>a</sub> of CS-C were both affected by the decrease of the amino groups, whereas the gelation time and the required β-GP content for gelling significantly decreased. …”
  8. 1388
  9. 1389

    The raw data for Fig 4. by Hongjoo An (21703199)

    Published 2025
    “…Luciferase assay and human and mouse brain multi-omics data show that, during the differentiation of OL precursor cells (OPCs) into OLs, the enhancer activity of Sox10-E1 does not change while that of Sox10-E2 decreases significantly. Chromatin interaction data indicate that the two <i>Sox10</i> enhancers lie close to the border of the <i>Sox10</i> topologically associating domain (TAD). …”
  10. 1390

    The raw data for S2 Fig. by Hongjoo An (21703199)

    Published 2025
    “…Luciferase assay and human and mouse brain multi-omics data show that, during the differentiation of OL precursor cells (OPCs) into OLs, the enhancer activity of Sox10-E1 does not change while that of Sox10-E2 decreases significantly. Chromatin interaction data indicate that the two <i>Sox10</i> enhancers lie close to the border of the <i>Sox10</i> topologically associating domain (TAD). …”
  11. 1391

    The raw data for Fig 6. by Hongjoo An (21703199)

    Published 2025
    “…Luciferase assay and human and mouse brain multi-omics data show that, during the differentiation of OL precursor cells (OPCs) into OLs, the enhancer activity of Sox10-E1 does not change while that of Sox10-E2 decreases significantly. Chromatin interaction data indicate that the two <i>Sox10</i> enhancers lie close to the border of the <i>Sox10</i> topologically associating domain (TAD). …”
  12. 1392

    The raw data for S4 Fig. by Hongjoo An (21703199)

    Published 2025
    “…Luciferase assay and human and mouse brain multi-omics data show that, during the differentiation of OL precursor cells (OPCs) into OLs, the enhancer activity of Sox10-E1 does not change while that of Sox10-E2 decreases significantly. Chromatin interaction data indicate that the two <i>Sox10</i> enhancers lie close to the border of the <i>Sox10</i> topologically associating domain (TAD). …”
  13. 1393

    The raw data for Fig 5B. by Hongjoo An (21703199)

    Published 2025
    “…Luciferase assay and human and mouse brain multi-omics data show that, during the differentiation of OL precursor cells (OPCs) into OLs, the enhancer activity of Sox10-E1 does not change while that of Sox10-E2 decreases significantly. Chromatin interaction data indicate that the two <i>Sox10</i> enhancers lie close to the border of the <i>Sox10</i> topologically associating domain (TAD). …”
  14. 1394

    Questionnaire description. by Cristobal Padilla-Fortunatti (21376807)

    Published 2025
    “…<div><p>Background</p><p>During the last decades, intensive care unit (ICU) mortality rates have significantly decreased but this progress has come with unintended consequences for patients and their caregivers. …”
  15. 1395

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  16. 1396

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  17. 1397

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  18. 1398

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  19. 1399

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  20. 1400