Search alternatives:
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
18041
Table of dataset division.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18042
Pattern indices of landscape levels.
Published 2025“…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
-
18043
Table 1_MicroRNA-27b alleviates septic cardiomyopathy by targeting the Mff/MAVS axis.docx
Published 2025“…</p>Results<p>Bioinformatics analysis revealed significant downregulation of miR-27b in SCM cardiac tissues (log2FC=-3.9, P<0.001). …”
-
18044
Striking image.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18045
Flow chart.
Published 2025“…Both TTH and migraine groups received PRT twice a week for six weeks,</p><p>Results</p><p>Within-group comparisons showed significant decreases in attack frequency, VAS, HIT-6, PCS, and WHODAS-II scores in both groups post-intervention (p<0.001). …”
-
18046
Precision, recall, F1-Score curve.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18047
Model comparison experimental results.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18048
Slicing aided hyper inference algorithm.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18049
Microbiome-host genetic association.
Published 2025“…Core microbiome and correlation analysis at the phylum and genus levels identified significant microbiota. Specifically, the abundance of genera such as <i>Pseudomonas</i> and <i>Akkermansia</i> decreased, while <i>Ruminococcus</i> and <i>Allistipes</i> increased, as determined by statistical and machine learning approaches. …”
-
18050
Summary description of the samples.
Published 2025“…Core microbiome and correlation analysis at the phylum and genus levels identified significant microbiota. Specifically, the abundance of genera such as <i>Pseudomonas</i> and <i>Akkermansia</i> decreased, while <i>Ruminococcus</i> and <i>Allistipes</i> increased, as determined by statistical and machine learning approaches. …”
-
18051
Improved YOLOv10 network structure.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18052
Loss function variation curve.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18053
Type level landscape index changes in 1990-2020.
Published 2025“…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
-
18054
Location map of the study area.
Published 2025“…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
-
18055
Different model detection results comparison.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18056
Data source.
Published 2025“…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
-
18057
Research Technology Flow Chart.
Published 2025“…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
-
18058
Inner-IoU.
Published 2025“…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
-
18059
PbCBP-O is required for efficient midgut traversal.
Published 2025“…<p><b>(A)</b> PbΔCBP-O ookinetes show regular motility. …”
-
18060
Data Sheet 1_Characteristics of cardiopulmonary exercise capacity in adults with different degrees of obesity.pdf
Published 2025“…</p>Conclusion<p>With the aggravation of obesity, the maximum exercise ability of adults decreases, VO<sub>2peak</sub>/kg and VO<sub>2</sub>/HR<sub>max</sub>%Pred decreases, and the breathing reserve decreases.…”