Search alternatives:
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
linear decrease » linear increase (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
linear decrease » linear increase (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
10821
Mechanism analysis results.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10822
Endogenous test results.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10823
Heterogeneity analysis results.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10824
Robustness test results.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10825
Baseline results of the impact of RLM on HWSW.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10826
The influencing factors of RLM.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10827
Variable definitions and basic statistics.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10828
Average and marginal effects of RLM on HWSW.
Published 2025“…Specifically, with every 1% increase in RLM, the likelihood of rural residents’ HWSW will decrease by 3.5%. This effect remains significant after a series of robustness checks. …”
-
10829
Thermal supply for each thermal supply unit.
Published 2025“…Additionally, it results in a 7.8% reduction in overall costs and a 30.2% decrease in carbon emissions. …”
-
10830
The OCPP-P2G-CHP coupling relationship.
Published 2025“…Additionally, it results in a 7.8% reduction in overall costs and a 30.2% decrease in carbon emissions. …”
-
10831
The provision of energy for carbon capture.
Published 2025“…Additionally, it results in a 7.8% reduction in overall costs and a 30.2% decrease in carbon emissions. …”
-
10832
39-20-6 Integrated Energy System.
Published 2025“…Additionally, it results in a 7.8% reduction in overall costs and a 30.2% decrease in carbon emissions. …”
-
10833
Power supply for each power supply unit.
Published 2025“…Additionally, it results in a 7.8% reduction in overall costs and a 30.2% decrease in carbon emissions. …”
-
10834
Overall view of the slurry.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
-
10835
Definitions of variables.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
-
10836
Realistic structure diagram of testing equipment.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
-
10837
Engineering geological cross section diagram.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
-
10838
The equipped sensors on steel pipes.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
-
10839
Close-up view of the slurry.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”
-
10840
The physical index properties of the loess.
Published 2024“…The field experimental results illustrated that: (1) The bearing capacity of inclined steel grouting pipe with anchorage length of 9 m increases 22.6% compared with that of ordinary grouting pipe. (2) Anchorage length is not a significant influence factor for bearing capacity of inclined steel grouting pipes in loess embankment slope, while anchorage length is a significant influence factor for modulus of load-displacement curves of inclined steel grouting pipes in loess embankment slope. (3) Effective anchorage length of inclined steel grouting pipe in loess embankment slope will be slightly increased when increasing anchorage length, while the ratio of effective anchorage length to total anchorage length will be decreased when increasing anchorage length. (4) Inclined steel grouting pipe average cohesive strength along effective anchorage length section at the interface between cement grouting and soil stratum is at least three times compared with that of rock bolt.…”