بدائل البحث:
linear decrease » linear increase (توسيع البحث)
we decrease » _ decrease (توسيع البحث), nn decrease (توسيع البحث), teer decrease (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
we decrease » _ decrease (توسيع البحث), nn decrease (توسيع البحث), teer decrease (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
-
13861
Generated spline library.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13862
Correlation coefficient matrix.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13863
Actual measurement of shape errors.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13864
RMSE versus learning rate.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13865
RMSE versus training parameters.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13866
Assembly process of machine recognition form.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13867
Process of steel truss incremental launching.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13868
CGAN and AutoML stacking device.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13869
Comprehensive prediction process of shape errors.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13870
Shape error manual calculation process.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13871
Data Sheet 1_Temperature influences mood: evidence from 11 years of Baidu index data in Chinese provincial capitals.csv
منشور في 2025"…Conversely, a 1°C increase in DTR led to decreases of 30.35%, 31.19%, and 15.41% in these indices (p < 0.05). …"
-
13872
U-wave estimates versus R-matrix noise variance.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13873
Sliding window process.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13874
Original record form of error matrix.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13875
Form for machine recognition.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13876
RMSE versus architectural parameters.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13877
Kalman process.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13878
Attention mechanism.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13879
Shape error measurement results statistics.
منشور في 2025"…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
-
13880
Supplementary file 1_Analysis of gut and circulating microbiota characteristics in patients with liver cirrhosis and portal vein thrombosis.docx
منشور في 2025"…</p>Results<p>(1) Gut microbiota showed no α-diversity difference between groups, but β-diversity differed significantly. PVT patients had increased Gram-negative bacteria (such as Escherichia-Shigella) and decreased SCFA-producing taxa. (2) Compared with peripheral vein microbiota, portal vein microbiota showed significant difference in α diversity and β diversity in cirrhotic patients with PVT, with Massilia enriched. (3) Portal microbiota had the highest diagnostic value for PVT (AUC = 0.95). (4) The tPVT group had more portal-feces shared genera than the tNPVT group (49 vs. 29). …"