يعرض 13,861 - 13,880 نتائج من 18,566 نتيجة بحث عن 'significantly ((((((we decrease) OR (a decrease))) OR (mean decrease))) OR (linear decrease))', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 13861

    Generated spline library. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  2. 13862

    Correlation coefficient matrix. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  3. 13863

    Actual measurement of shape errors. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  4. 13864

    RMSE versus learning rate. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  5. 13865

    RMSE versus training parameters. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  6. 13866

    Assembly process of machine recognition form. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  7. 13867

    Process of steel truss incremental launching. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  8. 13868

    CGAN and AutoML stacking device. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  9. 13869

    Comprehensive prediction process of shape errors. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  10. 13870

    Shape error manual calculation process. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  11. 13871

    Data Sheet 1_Temperature influences mood: evidence from 11 years of Baidu index data in Chinese provincial capitals.csv حسب Mengjiao Yin (10995604)

    منشور في 2025
    "…Conversely, a 1°C increase in DTR led to decreases of 30.35%, 31.19%, and 15.41% in these indices (p < 0.05). …"
  12. 13872

    U-wave estimates versus R-matrix noise variance. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  13. 13873

    Sliding window process. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  14. 13874

    Original record form of error matrix. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  15. 13875

    Form for machine recognition. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  16. 13876

    RMSE versus architectural parameters. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  17. 13877

    Kalman process. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  18. 13878

    Attention mechanism. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  19. 13879

    Shape error measurement results statistics. حسب Zhe Hu (787283)

    منشور في 2025
    "…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …"
  20. 13880

    Supplementary file 1_Analysis of gut and circulating microbiota characteristics in patients with liver cirrhosis and portal vein thrombosis.docx حسب Ping Qi (772738)

    منشور في 2025
    "…</p>Results<p>(1) Gut microbiota showed no α-diversity difference between groups, but β-diversity differed significantly. PVT patients had increased Gram-negative bacteria (such as Escherichia-Shigella) and decreased SCFA-producing taxa. (2) Compared with peripheral vein microbiota, portal vein microbiota showed significant difference in α diversity and β diversity in cirrhotic patients with PVT, with Massilia enriched. (3) Portal microbiota had the highest diagnostic value for PVT (AUC = 0.95). (4) The tPVT group had more portal-feces shared genera than the tNPVT group (49 vs. 29). …"