Showing 5,061 - 5,080 results of 18,468 for search 'significantly ((((((we decrease) OR (larger decrease))) OR (a decrease))) OR (mean decrease))', query time: 0.86s Refine Results
  1. 5061
  2. 5062

    Characteristics of included studies. by Rong Pi (21743379)

    Published 2025
    “…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
  3. 5063

    Sensitivity analysis for acute fatigue subscale. by Rong Pi (21743379)

    Published 2025
    “…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
  4. 5064

    Factors related to nurses’ occupational fatigue. by Rong Pi (21743379)

    Published 2025
    “…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
  5. 5065

    Sensitivity analysis for inter-shift subscale. by Rong Pi (21743379)

    Published 2025
    “…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
  6. 5066

    Reinforced sample destruction mode. by Xiaoyan Ding (291429)

    Published 2025
    “…The suggested optimised parameters are as follows: a filling rate of 3 mL/min, a cementitious solution concentration of 0.5 mol/L to 1 mol/L, and a reasonable number of filling. …”
  7. 5067

    One-dimensional sand column test conditions. by Xiaoyan Ding (291429)

    Published 2025
    “…The suggested optimised parameters are as follows: a filling rate of 3 mL/min, a cementitious solution concentration of 0.5 mol/L to 1 mol/L, and a reasonable number of filling. …”
  8. 5068

    FK506 significantly potentiates caspofungin activity against tolerant <i>C. tropicalis</i> strains, reversing tolerance phenotypes in both <i>in vitro</i> and <i>in vivo</i> models... by Yongqin Wu (272012)

    Published 2025
    “…Survival rates were assessed using Kaplan-Meier analysis, and statistical significance was determined using a log-rank (Mantel-Cox) test. …”
  9. 5069

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  10. 5070

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  11. 5071

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  12. 5072

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  13. 5073

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  14. 5074

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  15. 5075

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  16. 5076

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  17. 5077

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  18. 5078

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  19. 5079

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  20. 5080

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”