Showing 1,501 - 1,520 results of 18,229 for search 'significantly ((((((we decrease) OR (largest decrease))) OR (greater decrease))) OR (a decrease))', query time: 0.65s Refine Results
  1. 1501

    Structure diagram of the SE attention mechanism. by Junyan Wang (4738518)

    Published 2025
    “…However, small object detection faces numerous challenges, such as significant difficulty, substantial interference from complex backgrounds, and inconsistent annotation quality. …”
  2. 1502
  3. 1503
  4. 1504
  5. 1505
  6. 1506
  7. 1507
  8. 1508
  9. 1509
  10. 1510

    Top 10 significant functional annotations of up-regulated DEGs. by Meitner Cadena (22216261)

    Published 2025
    “…Functional annotations are ordered by decreasing significance, with color indicating significance according to the legend’s color scale, the ratio of genes on the horizontal axis, and DEG count represented by circle size.…”
  11. 1511

    Top 10 significant functional annotations of down-regulated DEGs. by Meitner Cadena (22216261)

    Published 2025
    “…Functional annotations are ordered by decreasing significance, with color indicating significance level based on the legend’s color scale, the ratio of genes on the horizontal axis, and DEG count represented by circle size.…”
  12. 1512
  13. 1513

    Major hyperparameters of RF-SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  14. 1514

    Pseudo code for coupling model execution process. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  15. 1515

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  16. 1516

    Results of RF algorithm screening factors. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  17. 1517

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  18. 1518

    Voxel-based whole-brain analysis shows regional and dose-dependent effects of netoglitazone in decreasing plaque mean size. by Francesca Catto (21253435)

    Published 2025
    “…However, there is only a minimal effect on decreasing plaque size. (C) Short-term-treatment with a high dose of netoglitazone reveals a significant reduction in plaque size, especially observed in the hippocampus, striatum, thalamus, hypothalamus, midbrain, and hindbrain. …”
  19. 1519
  20. 1520