Showing 1,301 - 1,320 results of 6,271 for search 'significantly ((((((we decrease) OR (largest decrease))) OR (teer decrease))) OR (nn decrease))', query time: 0.47s Refine Results
  1. 1301

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  2. 1302

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  3. 1303

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  4. 1304

    Raw data underlying the findings in this study. by Andrew Mvula (20161161)

    Published 2024
    “…The relative bone density significantly decreased as standard length and condition factor (<i>K</i>) increased in both sexes. …”
  5. 1305

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  6. 1306

    Primer sequences. by Koichi Yoshimoto (9298643)

    Published 2024
    “…We examined the mRNA expression of <i>Ddit3</i> (CHOP) and <i>Casp3</i> (caspase-3) on day one after the surgery; mRNA expression of both genes appeared to decrease in the KUS121 group, as compared with the control group, although differences between groups were not significant. …”
  7. 1307
  8. 1308
  9. 1309

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  10. 1310

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  11. 1311

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  12. 1312

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  13. 1313

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  14. 1314

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  15. 1315

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  16. 1316

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  17. 1317

    ASIR prediction from 2020 to 2030 by sex. by Majed M. Ramadan (22379116)

    Published 2025
    “…Bahrain also saw a significant increase in male Age-standardized death rate (ASDR), despite all other countries experiencing a decrease. …”
  18. 1318

    Colocalization results. by Marie C. Sadler (9649799)

    Published 2025
    “…We identified eleven genome-wide significant signals with six mapping to SLC39/ZIP and SLC30/ZnT gene regions. …”
  19. 1319

    Finemapping results. by Marie C. Sadler (9649799)

    Published 2025
    “…We identified eleven genome-wide significant signals with six mapping to SLC39/ZIP and SLC30/ZnT gene regions. …”
  20. 1320

    Sample characteristics using MICS 2012 and 2019. by Satyajit Kundu (9078709)

    Published 2025
    “…Although childhood stunting has decreased in Bangladesh over time, the current prevalence remains high. …”