Search alternatives:
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
1321
Magnetic Fields Generated by Directed Ionic Flow
Published 2024“…Our experimental results reveal that the magnetic flux density is directly proportional to the current intensity and decreases with larger distances. Furthermore, it increases with the number of effective coils and decreases with larger conduit sizes, demonstrating the significant impact of conduit shape on the generated magnetic field. …”
-
1322
Magnetic Fields Generated by Directed Ionic Flow
Published 2024“…Our experimental results reveal that the magnetic flux density is directly proportional to the current intensity and decreases with larger distances. Furthermore, it increases with the number of effective coils and decreases with larger conduit sizes, demonstrating the significant impact of conduit shape on the generated magnetic field. …”
-
1323
-
1324
AZ10606120 treatment significantly increased cytotoxicity and reduced cell number in a dose-dependent manner.
Published 2025“…Cell numbers were significantly decreased in cells after treatment with AZ10606120 (50µM) compared to both temozolomide (TMZ; 50µM) treatment and untreated controls. …”
-
1325
Performance comparison of ML models.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1326
Comparative data of different soil samples.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1327
Confusion matrix of random forest model.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1328
Sensor value scenario for fuzzy logic algorithm.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1329
Evaluation metrics of selected ML models.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1330
Block diagram of the proposed system.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1331
Chart for applicable amount of fertilizers.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1332
Cost analysis of irrigation controller unit.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1333
Run times of two algorithms.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1334
Flow chart of Fuzzy Logic based control system.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1335
Block diagram for IoT-based irrigation system.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1336
Flow chart of Average Value-based control system.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1337
Hardware design for IoT-based irrigation system.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1338
Recruitment flow diagram of the current study.
Published 2025“…Predictors of HRQoL included sociodemographic, psychological, medical, and trauma-related factors collected at baseline. We applied generalized additive mixed models to flexibly capture nonlinear changes in HRQoL over time, and piecewise latent growth curve model to analyze distinct linear phases of recovery across defined time intervals.…”
-
1339
Age-specific burden of IHD attributable to HSBP for males and females in 2021.
Published 2025Subjects: -
1340