Showing 2,361 - 2,380 results of 7,748 for search 'significantly ((((((we decrease) OR (nn decrease))) OR (greater decrease))) OR (linear decrease))', query time: 0.51s Refine Results
  1. 2361

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  2. 2362

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  3. 2363

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  4. 2364

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  5. 2365

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  6. 2366

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  7. 2367

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  8. 2368

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  9. 2369

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  10. 2370

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  11. 2371

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  12. 2372

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  13. 2373

    Results from GLM tests of moderation. by Ninette Simonian (17991376)

    Published 2025
    “…Breathwork conditions produced greater decreases in breath rate compared to rain stimuli (p.fdr=.002). …”
  14. 2374

    Participant setup. by Ninette Simonian (17991376)

    Published 2025
    “…Breathwork conditions produced greater decreases in breath rate compared to rain stimuli (p.fdr=.002). …”
  15. 2375

    Descriptive Statistics by Timepoints. by Ninette Simonian (17991376)

    Published 2025
    “…Breathwork conditions produced greater decreases in breath rate compared to rain stimuli (p.fdr=.002). …”
  16. 2376
  17. 2377

    Source data for Fig 2. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”
  18. 2378

    Source data for lung metabolomics. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”
  19. 2379

    Source data for Fig 5. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”
  20. 2380

    Source data for Fig 1. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”