Showing 3,221 - 3,240 results of 9,062 for search 'significantly ((((((we decrease) OR (nn decrease))) OR (larger decrease))) OR (mean decrease))', query time: 0.57s Refine Results
  1. 3221

    Primers for qPCR. by Xiaoyi Shi (3825754)

    Published 2024
    “…Our results indicated that PGAM5 was significantly elevated by I/R injury, and predominantly localized in the necrosis area. …”
  2. 3222

    Making Cells as a “Nirvana Phoenix”: Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots by Juan Kong (2230867)

    Published 2025
    “…However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)<sub>2</sub>) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag<sub>2</sub>Se QDs. …”
  3. 3223

    Making Cells as a “Nirvana Phoenix”: Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots by Juan Kong (2230867)

    Published 2025
    “…However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)<sub>2</sub>) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag<sub>2</sub>Se QDs. …”
  4. 3224

    S1 Raw data - by Xiaoyi Shi (3825754)

    Published 2024
    “…Our results indicated that PGAM5 was significantly elevated by I/R injury, and predominantly localized in the necrosis area. …”
  5. 3225

    Minimal data set. by Fu-Lin Yu (21446056)

    Published 2025
    “…However, the metabolic mechanisms underlying arsenic’s effects on muscle function and pathogenesis remain incompletely understood. In this study, we investigated the role of mitochondrial fatty acid oxidation in arsenic-induced muscular damage using mouse skeletal muscle C2C12 cells. …”
  6. 3226

    Making Cells as a “Nirvana Phoenix”: Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots by Juan Kong (2230867)

    Published 2025
    “…However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)<sub>2</sub>) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag<sub>2</sub>Se QDs. …”
  7. 3227

    Making Cells as a “Nirvana Phoenix”: Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots by Juan Kong (2230867)

    Published 2025
    “…However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)<sub>2</sub>) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag<sub>2</sub>Se QDs. …”
  8. 3228

    The chemical structure of melatonin. by Xiaoyi Shi (3825754)

    Published 2024
    “…Our results indicated that PGAM5 was significantly elevated by I/R injury, and predominantly localized in the necrosis area. …”
  9. 3229

    Regulation of Rice Grain Weight by Fatty Acid Composition: Unveiling the Mechanistic Roles of <i>OsLIN6</i> by OsARF12 by Haoran Tian (6706925)

    Published 2024
    “…However, the inner mechanism is still unclear and needs to be further studied. In this study, we identified that oleic acid (C18:1) negatively correlates while linoleic acid (C18:2) positively correlates with rice grain weight. …”
  10. 3230

    Modulating the Coordination Environment of Cu-Embedded Mo<i>X</i><sub>2</sub> (<i>X</i> = S, Se, and Te) Monolayers for Electrocatalytic Reduction of CO<sub>2</sub> to CH<sub>4</su... by Thamarainathan Doulassiramane (17382128)

    Published 2024
    “…We found that the catalytic activity is mainly due to the level of antibonding states filling between the Cu atom and *OCHOH intermediate. …”
  11. 3231

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  12. 3232

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  13. 3233

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  14. 3234

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  15. 3235

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  16. 3236

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  17. 3237

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  18. 3238

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  19. 3239

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  20. 3240

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”