Search alternatives:
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5901
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5902
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5903
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5904
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5905
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
5906
ZM Modifier.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5907
Factor-level.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5908
Gradation composition of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5909
Technical specifications of mineral filler.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5910
Technical indicators of coarse aggregate.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5911
Technical specifications of fine aggregates.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5912
Rutting test results of asphalt mixtures.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5913
Gradation composition of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5914
Results of the orthogonal test.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5915
Rutting test results.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5916
Technical Specifications of ZM Modifier.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5917
Gradation curve of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5918
Rutting test machine.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5919
Basic performance indicators of base asphalt.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
5920
Rutting specimen.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”