يعرض 4,561 - 4,580 نتائج من 18,354 نتيجة بحث عن 'significantly ((((greater decrease) OR (((we decrease) OR (a decrease))))) OR (linear decrease))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 4561

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  2. 4562

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  3. 4563

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  4. 4564

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  5. 4565

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  6. 4566

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  7. 4567

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  8. 4568
  9. 4569
  10. 4570
  11. 4571
  12. 4572
  13. 4573

    Variability of gait features during adaptation. حسب Samantha Jeffcoat (22783930)

    منشور في 2025
    "…<p>A) We observed significant differences between groups in step length asymmetry variability during EA. …"
  14. 4574
  15. 4575
  16. 4576
  17. 4577

    Bacterial strains and plasmids. حسب Eunsil Choi (8271039)

    منشور في 2025
    "…This activation altered virulence factors, including reduced biofilm formation, particularly in the 14028Δ<i>bipA</i> strain. Furthermore, the SL1344Δ<i>bipA</i> and 14028Δ<i>bipA</i> strains exhibited significantly decreased swimming motility at 20°C compared to 37°C, confirmed by microscopic observation showing fewer flagella at 20°C. …"
  18. 4578
  19. 4579

    Enhanced Cell Proliferation and Maturation Using Carboxylated Bacterial Nanocellulose Scaffolds for 3D Cell Culture حسب Elizabeth Mavil-Guerrero (20833989)

    منشور في 2025
    "…This interface must possess suitable surface chemistry, biomechanical properties, and fibrillar morphology across nano- to microscale levels to support cell attachment and growth, enabling a biomimetic arrangement. In this study, we developed a hydrogel scaffold made from bacterial nanocellulose (BNC) functionalized with carboxylic acid groups (BNC–COOH) through a reactive deep eutectic solvent (DES), offering a sustainable approach. …"
  20. 4580

    Enhanced Cell Proliferation and Maturation Using Carboxylated Bacterial Nanocellulose Scaffolds for 3D Cell Culture حسب Elizabeth Mavil-Guerrero (20833989)

    منشور في 2025
    "…This interface must possess suitable surface chemistry, biomechanical properties, and fibrillar morphology across nano- to microscale levels to support cell attachment and growth, enabling a biomimetic arrangement. In this study, we developed a hydrogel scaffold made from bacterial nanocellulose (BNC) functionalized with carboxylic acid groups (BNC–COOH) through a reactive deep eutectic solvent (DES), offering a sustainable approach. …"