يعرض 5,041 - 5,060 نتائج من 18,134 نتيجة بحث عن 'significantly ((((larger decrease) OR (((a decrease) OR (nn decrease))))) OR (linear decrease))', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 5041
  2. 5042

    Predictors in ordinal regression model for GDS. حسب Shane Naidoo (20148021)

    منشور في 2025
    "…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…"
  3. 5043

    Classification of hand grip strength. حسب Shane Naidoo (20148021)

    منشور في 2025
    "…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…"
  4. 5044

    Rating scale for functional severity [28]. حسب Shane Naidoo (20148021)

    منشور في 2025
    "…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…"
  5. 5045

    Regression model coefficients. حسب Shane Naidoo (20148021)

    منشور في 2025
    "…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…"
  6. 5046

    ICOPE screening positive participant’s responses. حسب Shane Naidoo (20148021)

    منشور في 2025
    "…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…"
  7. 5047

    WHO BMI classification for adults. حسب Shane Naidoo (20148021)

    منشور في 2025
    "…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…"
  8. 5048

    Data_Sheet_2_Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing.docx حسب Xiao-Xiao Guo (6092141)

    منشور في 2024
    "…The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). …"
  9. 5049

    Data_Sheet_1_Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing.zip حسب Xiao-Xiao Guo (6092141)

    منشور في 2024
    "…The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). …"
  10. 5050

    Changes in the active H3K27ac and repressive H3K27me3 histone marks among Vasa2+/Piwi1+ and all cells in fed, starved, and refed juvenile polyps. حسب Eudald Pascual-Carreras (12115380)

    منشور في 2025
    "…Between fed, T<sub>5ds</sub> and T<sub>20ds</sub> timepoints, MFI levels of H3K27ac progressively and significantly decreased while levels H3K27me3 (M) did not change significantly (N). …"
  11. 5051

    Combination of intraperitoneal and intratumoral administration of vitamin D3 is more effective in reducing the EAC tumor volume compared to just i.p. administration: حسب Vidya G. Bettada (22208808)

    منشور في 2025
    "…Ki67 on the other hand showed a significant reduction in the expression in the i.p & i.t treated vitamin D3 group. 7D. …"
  12. 5052

    Testing set error. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  13. 5053

    Internal structure of an LSTM cell. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  14. 5054

    Prediction effect of each model after STL. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  15. 5055

    The kernel density plot for data of each feature. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  16. 5056

    Analysis of raw data prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  17. 5057

    Flowchart of the STL. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  18. 5058

    SARIMA predicts season components. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  19. 5059

    BWO-BiLSTM model prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  20. 5060

    Bi-LSTM architecture diagram. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"