Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
larger decrease » marked decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
larger decrease » marked decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6641
Gradation composition of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6642
Results of the orthogonal test.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6643
Rutting test results.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6644
Technical Specifications of ZM Modifier.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6645
Gradation curve of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6646
Rutting test machine.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6647
Basic performance indicators of base asphalt.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6648
Rutting specimen.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6649
Orthogonal experimental design.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6650
Immersion Marshall test results.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6651
The hourly temperatures in the phytotron.
Published 2025“…After 10 days of exposure to LTS, the pollen viability decreased most significantly at the heading stage by 44.67%, followed by the booting and the tillering stages. …”
-
6652
Fatigue life under different stress ratios.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6653
Freeze–thaw splitting test results.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6654
Preparation flowchart of ZM-modified asphalt.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6655
Immersion Marshall test equipment and specimens.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6656
Strength test results of semi-circular specimens.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6657
Bending test results of beam specimens.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6658
Cis-acting elements in the promoter of PtWRKYs.
Published 2025“…Based on RNA-Seq, we identified 83 <i>WRKYs</i> significantly respond to cadmium (Cd) stress. Subsequently, we conducted a study on <i>WRKY95</i>, which was significantly up-regulated in the roots, stems, and leaves under Cd stress. …”
-
6659
The Ka/Ks values of PtWRKY paralogous gene pairs.
Published 2025“…Based on RNA-Seq, we identified 83 <i>WRKYs</i> significantly respond to cadmium (Cd) stress. Subsequently, we conducted a study on <i>WRKY95</i>, which was significantly up-regulated in the roots, stems, and leaves under Cd stress. …”
-
6660
RNA-seq data of WRKY genes.
Published 2025“…Based on RNA-Seq, we identified 83 <i>WRKYs</i> significantly respond to cadmium (Cd) stress. Subsequently, we conducted a study on <i>WRKY95</i>, which was significantly up-regulated in the roots, stems, and leaves under Cd stress. …”