Showing 1,901 - 1,920 results of 4,761 for search 'significantly ((((larger decrease) OR (nn decrease))) OR (((mean decrease) OR (greater decrease))))', query time: 0.57s Refine Results
  1. 1901
  2. 1902
  3. 1903
  4. 1904

    Baseline characteristics of participants. by Mei Zhou (269746)

    Published 2025
    “…</p><p>Results</p><p>After DRG implementation, the logarithmic mean of total hospitalization expenditures decreased significantly (3.914 ± 0.837 vs. 3.872 ± 1.004), while rates of unplanned readmissions, unplanned reoperations, postoperative complications, and patient complaints within 30 days increased significantly (3.784% vs 4.214%, 0.083% vs 0.166%, 0.207% vs 0.258%, 3.741% vs 5.133%). …”
  5. 1905

    The framework diagram of this study. by Mei Zhou (269746)

    Published 2025
    “…</p><p>Results</p><p>After DRG implementation, the logarithmic mean of total hospitalization expenditures decreased significantly (3.914 ± 0.837 vs. 3.872 ± 1.004), while rates of unplanned readmissions, unplanned reoperations, postoperative complications, and patient complaints within 30 days increased significantly (3.784% vs 4.214%, 0.083% vs 0.166%, 0.207% vs 0.258%, 3.741% vs 5.133%). …”
  6. 1906
  7. 1907
  8. 1908
  9. 1909
  10. 1910
  11. 1911

    The overall framework of CARAFE. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  12. 1912

    KPD-YOLOv7-GD network structure diagram. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  13. 1913

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  14. 1914

    Comparison of different pruning rates. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  15. 1915

    Comparison of experimental results at ablation. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  16. 1916

    Result of comparison of different lightweight. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  17. 1917

    DyHead Structure. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  18. 1918

    The parameters of the training phase. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  19. 1919

    Structure of GSConv network. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  20. 1920

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”