Search alternatives:
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
921
Performance comparison of ML models.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
922
Comparative data of different soil samples.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
923
Confusion matrix of random forest model.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
924
Sensor value scenario for fuzzy logic algorithm.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
925
Evaluation metrics of selected ML models.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
926
Block diagram of the proposed system.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
927
Chart for applicable amount of fertilizers.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
928
Cost analysis of irrigation controller unit.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
929
Run times of two algorithms.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
930
-
931
Flow chart of Fuzzy Logic based control system.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
932
Block diagram for IoT-based irrigation system.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
933
Flow chart of Average Value-based control system.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
934
Hardware design for IoT-based irrigation system.
Published 2025“…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
935
-
936
Characteristics of the study subjects (N = 39).
Published 2025“…EELV increased in PL (+ 0.7 mL/kg PBW), PR (+2.0), and AR (+2.8), but decreased in AL (−2.3) (<i><i>p</i></i> < 0.001). In the bilateral protocol (n = 10, 70% male; 23.6 ± 3.2 years), regional ventilation showed no significant effects of position, ROI, or interaction (<i><i>p</i></i> > 0.05). …”
-
937
Flowchart of study.
Published 2025“…EELV increased in PL (+ 0.7 mL/kg PBW), PR (+2.0), and AR (+2.8), but decreased in AL (−2.3) (<i><i>p</i></i> < 0.001). In the bilateral protocol (n = 10, 70% male; 23.6 ± 3.2 years), regional ventilation showed no significant effects of position, ROI, or interaction (<i><i>p</i></i> > 0.05). …”
-
938
-
939
-
940
Analysis of differential microbiome and classification prediction model between case and control groups.
Published 2025“…<p><b>(A)</b> Linear discriminant analysis [LDA; (log10)>2] and (B) effect size (LEfSe) analysis revealed significant differences (P < 0.01) in the microbiota of the case (orange, negative score) and control groups (blue, positive score) groups. …”