Showing 4,661 - 4,680 results of 18,314 for search 'significantly ((((largest decrease) OR (((teer decrease) OR (mean decrease))))) OR (a decrease))', query time: 0.41s Refine Results
  1. 4661

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  2. 4662

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  3. 4663

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  4. 4664

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  5. 4665

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  6. 4666

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  7. 4667

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  8. 4668

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  9. 4669

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  10. 4670

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  11. 4671

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  12. 4672

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  13. 4673

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  14. 4674

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  15. 4675
  16. 4676

    Hardware comparison. by Ariel Burman (20329776)

    Published 2024
    “…This results in three significant advantages: the footprint area decreases by more than eight times, leading to reduced power consumption and a faster response to non-stationary signals.…”
  17. 4677
  18. 4678
  19. 4679
  20. 4680