Showing 2,481 - 2,500 results of 18,101 for search 'significantly ((((largest decrease) OR (greater decrease))) OR (((nn decrease) OR (a decrease))))', query time: 0.79s Refine Results
  1. 2481

    Data Sheet 5_CD44 knockdown alters miRNA expression and their target genes in colon cancer.zip by Diana Maltseva (11678641)

    Published 2025
    “…Introduction<p>Metastasis formation poses a significant challenge to oncologists, as it severely limits the survival of colorectal cancer (CRC) patients. …”
  2. 2482

    Data Sheet 1_CD44 knockdown alters miRNA expression and their target genes in colon cancer.pdf by Diana Maltseva (11678641)

    Published 2025
    “…Introduction<p>Metastasis formation poses a significant challenge to oncologists, as it severely limits the survival of colorectal cancer (CRC) patients. …”
  3. 2483

    Data Sheet 3_CD44 knockdown alters miRNA expression and their target genes in colon cancer.pdf by Diana Maltseva (11678641)

    Published 2025
    “…Introduction<p>Metastasis formation poses a significant challenge to oncologists, as it severely limits the survival of colorectal cancer (CRC) patients. …”
  4. 2484
  5. 2485

    Major hyperparameters of RF-SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  6. 2486

    Pseudo code for coupling model execution process. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  7. 2487

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  8. 2488

    Results of RF algorithm screening factors. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  9. 2489

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  10. 2490
  11. 2491
  12. 2492
  13. 2493
  14. 2494
  15. 2495
  16. 2496
  17. 2497
  18. 2498
  19. 2499
  20. 2500