Showing 5,141 - 5,160 results of 17,906 for search 'significantly ((((largest decrease) OR (teer decrease))) OR (((a decrease) OR (nn decrease))))', query time: 0.65s Refine Results
  1. 5141
  2. 5142

    Adult <i>Shroom3</i><sup><i>+</i></sup><sup><i>/Gt</i></sup> mouse hearts show left ventricular thinning. by Jennifer L. Carleton (22208916)

    Published 2025
    “…C) Quantification of the thickness of the compact layers of 3-month-old hearts showed a significant decrease in left ventricle wall thickness in the heterozygous mice (P < 0.0001) when compared to the wild-type. …”
  3. 5143
  4. 5144
  5. 5145
  6. 5146

    Summary of study participants. by Jesús Poch-Páez (21807825)

    Published 2025
    “…A total of 650 individuals (including 89 children under 18 years of age) were evaluated using a combined serological testing strategy to confirm past SARS-CoV-2 infection. …”
  7. 5147

    Participants’ characteristics. by Jesús Poch-Páez (21807825)

    Published 2025
    “…A total of 650 individuals (including 89 children under 18 years of age) were evaluated using a combined serological testing strategy to confirm past SARS-CoV-2 infection. …”
  8. 5148

    Sources of infection. by Jesús Poch-Páez (21807825)

    Published 2025
    “…A total of 650 individuals (including 89 children under 18 years of age) were evaluated using a combined serological testing strategy to confirm past SARS-CoV-2 infection. …”
  9. 5149
  10. 5150
  11. 5151

    Resistant Starch Nanoparticles Induce Colitis through Lysosomal Exocytosis in Mice by Chenglu Peng (19935965)

    Published 2024
    “…This, in turn, triggered the TFEB signaling pathway and thus upregulated the lysosomal exocytosis level, leading to lysosomal enzymes to be released to the intestinal lumen. As a result, a decreased number of intestinal goblet cells, diminished tight junction protein expression, and imbalanced intestinal flora in mice were observed. …”
  12. 5152
  13. 5153

    Regression results of the Callaway method. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  14. 5154

    Regression results of crowding out effects. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  15. 5155

    Article data. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  16. 5156

    Overidentification test results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  17. 5157

    Quantile regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  18. 5158

    Instrumental variable regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  19. 5159

    Other robust regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  20. 5160

    Baseline regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”